Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391.

نویسندگان

  • E Tjeerd van Rij
  • Monique Wesselink
  • Thomas F C Chin-A-Woeng
  • Guido V Bloemberg
  • Ben J J Lugtenberg
چکیده

Pseudomonas chlororaphis PCL1391 produces the secondary metabolite phenazine-1-carboxamide (PCN), which is an antifungal metabolite required for biocontrol activity of the strain. Identification of conditions involved in PCN production showed that some carbon sources and all amino acids tested promote PCN levels. Decreasing the pH from 7 to 6 or decreasing the growth temperature from 21 to 16 degrees C decreased PCN production dramatically. In contrast, growth at 1% oxygen as well as low magnesium concentrations increased PCN levels. Salt stress, low concentrations of ferric iron, phosphate, sulfate, and ammonium ions reduced PCN levels. Fusaric acid, a secondary metabolite produced by the soilborne Fusarium spp. fungi, also reduced PCN levels. Different nitrogen sources greatly influenced PCN levels. Analysis of autoinducer levels at conditions of high and low PCN production demonstrated that, under all tested conditions, PCN levels correlate with autoinducer levels, indicating that the regulation of PCN production by environmental factors takes place at or before autoinducer production. Moreover, the results show that autoinducer production not only is induced by a high optical density but also can be induced by certain environmental conditions. We discuss our findings in relation to the success of biocontrol in the field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391.

Production of the secondary metabolite phenazine-1-carboxamide (PCN) by Pseudomonas chlororaphis PCL1391 is crucial for biocontrol activity against the phytopathogen Fusarium oxysporum f. sp. radicis lycopersici on tomato. Regulation of PCN production involves the two-component signalling system GacS/GacA, the quorum-sensing system PhzI/PhzR and the regulator PsrA. This paper reports that a fun...

متن کامل

Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot.

The phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 controls tomato foot and root rot caused by Fusarium oxysporum f. sp. radicislycopersici. To test whether root colonization is required for biocontrol, mutants impaired in the known colonization traits motility, prototrophy for amino acids, or production of the site-specific recombinase, Sss/XerC were tested for th...

متن کامل

Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium.

Pseudomonas chlororaphis PCL1391 controls tomato foot and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. The production of phenazine-1-carboxamide (PCN) is crucial for this biocontrol activity. In vitro production of PCN is observed only at high-population densities, suggesting that production is under the regulation of quorum sensing. The main autoinducer molecule produced b...

متن کامل

Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici.

The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are es...

متن کامل

Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391.

Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide (PCN) that inhibits growth of Fusarium oxysporum f. sp. radius lycopersici the causative agent of tomato foot and root rot. Our previous work unraveled a cascade of genes regulating the PCN biosyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2004